Jornal Internacional de Desenvolvimento e Pesquisa de Drogas

  • ISSN: 0975-9344
  • Índice h do diário: 44
  • Pontuação de citação de diário: 59.93
  • Fator de impacto do periódico: 48.80
Indexado em
  • Genamics JournalSeek
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Scimago
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • OCLC- WorldCat
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEU
  • Laboratórios secretos do mecanismo de pesquisa
  • ResearchGate
Compartilhe esta página

Abstrato

Development of Protocol for Biofuel Production from Cellulose

Manjari singh*

Worldwide, there is an increasing need for ethanol production as a result of rapid industrialisation and population expansion. Due to their primary importance as food and feed, conventional crops like maize and sugar cane cannot produce enough biofuels to meet the world's demand. Ligno-cellulosic materials, including pseudo stem debris from bananas, have value and make desirable feedstock for the production of bioethanol. Utilising agricultural industrial waste has the advantages of being affordable, renewable, and plentiful. Bioethanol from banana pseudo stem waste has the potential to be a noteworthy technological advancement thanks to an efficient method. The real effort involves employing acid pre-treatment, hydrolysis, and fermentation by Aspergillus Niger to bio convert cellulose from banana pseudo stem waste, collected from an agro-industry, into ethanol. Pre-treating the Banana Pseudo stem waste fibres with diluted sulfuric acid and then heating the resulting combination to a high temperature to disrupt the cellulose's crystalline structure in order to make it easier for diluted acids to hydrolyse the cellulosic component. The cellulose content is hydrolysed into reducing sugars using a dilute acid hydrolysis process that requires 72 hours of incubation at a high temperature. The hydrolysed waste is then fermented with Aspergillus Niger under ideal incubation conditions to create ethanol.

Keywords

Biofuel production; Cellulose; Banana pseudo stem; Aspergillus niger; Fermentation; Bioethanol