Jornal Internacional de Desenvolvimento e Pesquisa de Drogas

  • ISSN: 0975-9344
  • Índice h do diário: 44
  • Pontuação de citação de diário: 59.93
  • Fator de impacto do periódico: 48.80
Indexado em
  • Genamics JournalSeek
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Scimago
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • OCLC- WorldCat
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Euro Pub
  • Google Scholar
  • SHERPA ROMEU
  • Laboratórios secretos do mecanismo de pesquisa
  • ResearchGate
Compartilhe esta página

Abstrato

Extraction of Drug-Drug Interactions Using Convolutional Neural Networks

Puneet Souda*

Drug-drug interaction (DDI) extraction has long been a popular relation extraction task in natural language processing (NLP). Modern support vector machines (SVM) with a high number of manually set features are the foundation of most DDI extraction methods. Convolutional neural networks (CNN), a reliable machine learning technique that nearly never requires manually generated features, have recently shown significant promise for a variety of NLP tasks. CNN should be used for DDI extraction, which has never been looked at. A CNN-based technique for DDI extraction was put forth. CNN is a good option for DDI extraction, as shown by experiments done on the 2013 DDI Extraction challenge corpus. The CNN-based DDI extraction approach outperforms the currently highest performing method by 69.75%, achieving a score of 69.75%.

Keywords

Drug-drug interaction (DDI); Convolutional neural networks (CNN); Support vector machines (SVM); Extraction

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado