Translational Biomedicine

  • ISSN: 2172-0479
  • Índice h do diário: 16
  • Pontuação de citação de diário: 5.91
  • Fator de impacto do periódico: 3.66
Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • JournalTOCs
  • Bíblia de pesquisa
  • O Fator de Impacto Global (GIF)
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Scimago
  • Biblioteca de periódicos eletrônicos
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • OCLC- WorldCat
  • Invocação Proquest
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Google Scholar
  • SHERPA ROMEU
  • Laboratórios secretos do mecanismo de pesquisa
  • ResearchGate
Compartilhe esta página

Abstrato

Glycogen Exocytosis from Cultured Pompe Skin Fibroblasts

Christopher T Turner,Maria Fuller, John J Hopwood, Peter J Meikle, Doug A Brooks

Objective: Pompe disease is a progressive form of muscular dystrophy caused by a deficiency in the lysosomal enzyme α-glucosidase (GAA), and leads to the accumulation of glycogen in affected cells. Enzyme replacement therapy is approved to treat infantile-onset Pompe disease, but this is not completely effective, necessitating the development of new therapeutic strategies. Exocytosis involves the fusion of intracellular vesicles with the cell surface and the release of vesicular content, and is a mechanism that could be used in Pompe disease to remove stored glycogen from affected cells. The exocytosis of storage material from Pompe patient cells into circulation could result in glycogen degradation by other amylases (i.e. not GAA) and this could be developed in the future as a new or adjunct therapeutic strategy.

Methods: A sensitive mass spectrometry assay was used to quantify glycogen in cell extracts and the culture media from confluent Pompe skin fibroblasts.

Results: Four percent of vesicular glycogen was exocytosed after 2 hours in culture. This natural process of glycogen exocytosis was enhanced in sub-confluent Pompe cells, which released >80% of glycogen after 2 hours in culture.

Conclusion: Under appropriate conditions exocytosis can release most of the stored glycogen in Pompe skin fibroblasts, identifying a potential target for therapeutic intervention.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado